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ABSTRACT

Three algorithms are developed for designing finite impulse

response (FIR) digital filters to be used for pulse shaping and

channel equalization. The first is the Minimax algorithm which

uses linear programming to design a frequency-sampling filter

with a pulse shape that approximates the specification in a minimax

sense. Symmetry restrictions are not required for the filter

impulse response since the generated resonator coefficients are

complex-valued. Also, the algorithm produces an efficient filter

by selecting the resonators to include in the order of their

decreasing contribution to the filter output. Design examples are

included which accurately approximate a specified impulse response

with a maximum error of 0.03 using only six resonators.

The second algorithm is an extension of the Minimax algorithm

to design preset equalizers for channels with known impulse responses.

Both transversal and frequency-sampling equalizer structures are

designed to produce a minimax approximation of a specified channel

output waveform. Examples of these designs are compared as to the

accuracy of the approximation, the resultant intersymbol inter-

ference (ISI), and the required transmitted energy. While the

transversal designs are slightly more accurate, the frequency-

sampling designs using six resonators have smaller ISI and energy

values.
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The Energy-Minimization algorithm accomplishes equalizer design

by using quadratic programming to minimize the transmitted energy

while constraining the maximum error e at any sampling point.

Examples using this algorithm are compared with Minimax design

examples for both transversal and frequency-sampling equalizers.

Most of the Energy-Minimization designs required less transmitted

energy and yield lower ISI than the corresponding Minimax designs.

Also, the specification of c provides a means of compromise between

the energy required and the resultant ISI in the received waveform.
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CHAPTER 1

INTRODUCTION

More reliable communication can be achieved if the problems

associated with the communication path, or channel, are overcome.

This study considers a baseband communication system using pulse

amplitude modulation (PAM). The problems considered are limited

channel bandwidth, intersymbol interference (ISI), noise, and

transmitted-signal energy limitations. Two types of finite impulse

response (FIR) digital filters are examined for use as equalizers

and/or pulse shaping filters in an effort to solve the problems.

Design procedures for these filters and design examples showing

their application to ideally bandlimited or more realistic channels

are included.

1.1 COMMUNICATION SYSTEM MODEL

The communication system model used in this study is shown in

Fig. 1-1. The data source generates a sequence of symbols {a(k)} at

a rate of I/Tb per second (s). The possible values that a(k) may

assume are restricted, i.e., a(k) is either a continuous variable

limited to some range or a discrete variable which assumes one of a

finite set of values. In the case of binary signaling only the

two values ±1 are allowed.

1
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Fig. 1-1. Communication System Model.

Fig. 1-i. Communication System Model.
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The equalizer is a digital filter used to compensate for the

distortion introduced by the channel. The equalizer output is

given by

s(t) = a(k) h(t - kTb)
k

(1.1)

= a(k) , h(n) 6(t - kTb - nT),
k n

where h(t) is the impulse response of the digital filter, T is

time between output samples, and Tb is the time between input

symbols. The discrete-time output of the equalizer, or transmitter,

is converted to continuous time by the digital-to-analog (D/A)

converter which has a zero-order hold impulse response, gD(t) =

u(t) - u(t - T), where T is the sampling interval. In passing

through the baseband channel c(t), the continuous-signal waveform is

altered due to the channel's amplitude and phase characteristic plus

additive noise. The baseband channel has a lowpass frequency charac-

teristic C(f), but it generally lacks de response. For convenience

the D/A converter is grouped with the baseband channel to form the

total channel with impulse response c T(t).

At the receiver an attempt is made to reconstruct the transmitted

symbol sequence. The simplest type of receiver is a single-sample

detector in which the received waveform is sampled once every Tb s.

The receiver then chooses the symbol whose value is closest to the

sample value.



1.2 BASEBAND COMMUNICATION PROBLEMS

Three basic problems hinder the receiver from producing an

accurate replica of the transmitted symbol sequence: ISI, noise,

and maximum energy limitations of the transmitter and channel.

1.2.1 Intersymbol Interference

The bandwidth limitations and nonlinear phase characteristics

of realistic channels cause a pulse to be dispersed in time. One

pulse may be spread in time to the extent that it interferes with

the detection of several adjacent pulses. Even in the absence of

noise, receiver errors may exist because of ISI.

A received pulse y(t) is described mathematically by the convo-

lution of the transmitted pulse h(n) 6(t - nT) and the impulse

response of the total channel cT(t). The composite received wave-

form can be written as

Yc(t) = y(t - kTb). (1.2)
k

If single-sample detection is used, the maximum amount of distortion

caused by one pulse is called the total peak ISI distortion D, i.e.,

D , y(kTb) l. (1.3)

k Ok40

Complete elimination of ISI is achieved when each received pulse

has zero magnitude at the sampling times of all other pulses. Nyquist

[1 determined a class of pulses which exhibit this property. For

each of these pulses the composite frequency characteristic is flat
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over a bandwidth of 1/(2Tb) Hz. That is, the sum of the frequency

response of the pulse and all aliasing caused by sampling every Tb s

is a constant over the bandwidth 1/(2Tb) Hz. Pulses of the Nyquist

class are not physically realizable but can be closely approximated.

1.2.2 Noise

Noise in the channel is modeled by a term n(t) added to the

received waveform (1.2), where n(t) is assumed to be a sample

function of a stationary, white Gaussian random process. For channels

with low signal-to-noise ratios (SNR), optimum reception in the

presence of noise is more important than overcoming the problem of

ISI. It has been shown [2] that a receiver filter matched to the

received pulse gives optimum performance in the presence of such

noise. The matched filter has an impulse response r(t) = y(Tb - t),

and the filter output at time t = Tb is the optimum measure in an

SNR sense of the transmitted symbol value. The received pulse

is assumed to have negligible amplitude outside the interval O<t<Tb.

1.2.3 Energy Constraints

For a given channel the optimum signal energy-density distri-

bution strategy [3] is to shape the spectrum of the transmitted pulse

S(f) so it will not be attenuated significantly by the channel since

the received signal energy-density spectrum is proportional to

IS(f) 12 IC(f)12. However, for zero ISI the overall frequency charac-

teristic of the transmitter, channel, and receiver must satisfy the

Nyquist criterion over a bandwidth W < 1/2Tb Hz and zero elsewhere

[4]. This implies that signal energy often must be forced through

the channel, in the bandwidth W, where its attenuation is the

greatest in order to provide the overall Nyquist characteristic. A
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large amount of energy may be required of the transmitter, very little

of which is available at the receiver. A transmitter operating

at a given power level P with a fixed signaling interval Tb estab-

lishes an upper limit PTb on the amount of energy in each pulse.

Furthermore, many channels have a practical limit on the power that

can be applied to the channel. A compromise must be reached between

the conflicting requirements for large energy required for ISI-free

transmission and the fixed energy available for a transmitter

operating with specified power and signal rates.

1.3 FINITE IMPULSE RESPONSE FILTERS

Transversal and frequency-sampling digital filters are two

realizations of a FIR filter, whose impulse response {h(n)} is

non-zero only for N consecutive sample points.

1.3.1 Transversal Digital Filter

A transversal digital filter is a digital version of a tapped

delay line. As shown in Fig. 1-2, the transversal filter consists

of an N-stage shift register and N digital multipliers commonly

referred to as tap gains. The filter is designed by specifying the

number of shift-register stages N and the set of tap gains {h(n)}.

The difference equation relating the filter input and output can

be written by inspection.

N-1
y(n) = h(k) x(n - k). (1.4)

k=O

Taking the z-transform of h(n) yields the corresponding transfer



x(n)

h(O) h (1) h (2) h (N-2)h(N-

y (n)

Fig. 1-2. Transversal Filter.
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function, i.e.,

N-i
H(z) = h(n)z-n. (1.5)

n=O

Since (1.5) contains no poles, the transversal realization is

inherently stable.

1.3.2 Frequency-Sampling Digital Filter

A frequency-sampling filter consists of a comb filter in

cascade with a parallel bank of 1 + N/2 or fewer first- and second-

order digital resonators, as shown in Fig. 1-3. Associated with

each resonator is a filter coefficient H(k), called a frequency

sample, which can be obtained by replacing z-n by exp(-j2wkn/N)

in (1.5). The name "frequency sampling" comes from the original

design procedure [5] in which it was desired to approximate a

continuous frequency response by a set of samples {H(k)} taken

every 1/NT Hz, from dc to 1/2T, the half-sampling frequency.

Taking the inverse discrete Fourier transform (IDFT) of the

frequency samples yields the filter impulse response.

h(n) = N 1 H(k) exp(j27kn/N). (1.6)
k=0

The continuous frequency response of the filter has the desired

values at the frequency samples. Substituting (1.6) into (1.5)

yields

H(z) N-1 N-1 12knN -n

= N H(k) exp kn n(
n=0 k=0



RESONATOR

#0

COMB FILTER

x (n) + RESONATOR

#1

0 +y 
(n)

z-N r 0

RESONATOR

#N/2

Fig. 1-3. Frequency-Sampling Filter.
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which by exchanging the order of summation gives

-N N-1H(z) I - z H(k) (1.8)
k=0 1 - exp(j2wk/N)z

The frequency samples are assumed to be complex valued, i.e.,

H(k) = X(k) + jY(k); however, the impulse response {h(n)} is

assumed to be real valued, which implies that

X(k) = X(N - k),

Y(k) = -Y(N - k), (1.9)

Y(O) = 0.

Thus (1.8) can be simplified by combining exponentials. For N

even

-N

H(z) - X(0) + X(N/2) +
-1-1

N/2-1 2X(k) - 2[X(k) cos(2lk/N) + Y(k) sin(2.k/N)z-1]

k= 1 - -1 cos(2fk/N) + z-2

The forms of the first- and second-order resonators are shown in

Fig. 1-4. In a similar way (1.6) can be written in the form

h(n) = X(0) + (-I)nX(N/2) +
N (1.11)

2 N/2-1
- [X(k) cos(2?I*n/N) - Y(k) sin(2-rrkn/N)].

k=l

In a frequency-sampling filter the comb filter contributes

zeros which are uniformly spaced around the unit circle in the z

plane. The desired frequency characteristic is formed by using



X(0) /N

-1z

(a) First-Order Resonator

2X(k)/N

+ + +

Z(k) 2 cos(2rk/N)

z-1 z -1 4_4 z-1

Z(k) = -2[X(k)cos(27k/N) + Y(k)sin(27k/N)]/N

(b) Second-Order Resonator

Fig. 1-4. Digital Resonators.
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resonator poles to cancel selected zeros depending on whether

the filter is lowpass, bandpass, etc. Because the poles lie

on the unit circle, frequency-sampling filters can be unstable;

however, the stability can be assured without measurably altering

the filter characteristics by moving the poles and zeros slightly

inside the unit circle [5].

1.4 SURVEY OF PERTINENT LITERATURE

A summary of the historical developments in baseband commu-

nication systems is found in the report by Houts and Burlage [6].

However, some of the pertinent articles in the areas of intersymbol

interference, signal energy considerations, and digital filter

design techniques are summarized in this section. Hancock [7]

studied the problem of choosing optimum signaling waveforms for

digital communication over a known channel. Under the constraint

of no ISI many possible waveforms exist. Hancock's method was

to choose the one with the largest received energy, since this

was optimum for a matched filter receiver. He also investigated

the trade-off between elimination of ISI and minimization of

transmitted energy. Schweppe [8] proposed a general method for

choosing signaling waveforms for ideal bandlimited channels to

minimize the probability of error. The energy in the waveforms

was not constrained although the waveforms were assumed to not

overlap in time. Snyder and Blaine [9] studied binary signaling

over a known channel with additive white Gaussian noise and

presented a method for joint optimization of the transmitted waveform
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and the receiver with constraints on the energy, peak amplitude, and

bandwidth of the transmitted pulse. In their work the waveforms

were not allowed to overlap in time.

Recent research in FIR digital filter design has centered

around the use of linear and nonlinear programming techniques to

provide designs which are optimal in some sense. Rabiner has

published several papers[10-14] on the subject of FIR digital

filter design. His methods use frequency-domain objective functions

which are minimized subject to constraints in the frequency and

time domains. The filters are assumed to have linear phase charac-

teristics. Cavin, Ray, and Rhyne [15] have used linear programming

to design a convolutional digital filter to be used as a receiver

for Ricker wavelets. The filter was designed to produce an output

spike whenever a Ricker wavelet was detected. Helms [16] has

summarized several optimization techniques using both linear and

nonlinear programming to design digital filters from frequency-

domain specifications. Burlage and Houts [17] have described a

method for designing transversal and frequency-sampling digital

filters from time-domain specifications. Linear programming was

used with the objective function and constraints written about

critical points in the desired waveform. Digital equalizers were

designed [18] by writing the objective function and constraints

about points in the channel output waveform. However, their

method relied on the user's ability to choose the critical points,

and it did not guarantee a solution. The frequency-sampling filters

were assumed to have a linear phase characteristic, and,as a result,

the transversal realization was considered better for use as an
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equalizer. It was observed that the energy in the transmitted pulse

increased drastically as constraints were added to the received wave-

form between established zero crossings because this required energy

to be transmitted through the channel at frequencies where the

attenuation was severe. The transmitted energy required was dependent

upon the ratio of sampling interval to pulse interval T/Tb, with

a minimum energy occurring in the vicinity of T/Tb = 0.4 for the

particular channel under study.

1.5 OUTLINE OF STUDY

This chapter has outlined the basic problems in baseband

communication systems, the previous efforts to solve these problems,

and the two types of FIR digital filters which will be employed

in the equalizer. The optimum design of FIR filters for pulse

shaping is the topic of Chapter 2. The applications considered

are matched-filter detection and equalization of an unknown band-

limited channel. Since the channel characteristic is unknown, it

is assumed to be ideal lowpass. The pulse-shaping design algorithm

is expanded in Chapter 3 to include communication systems in which

the channel impulse-response is known. The problem of designing a

filter to jointly combat the ISI and energy minimization problems is

discussed in Chapter 4. The final chapter contains conclusions

and recommendations for further study. Throughout this study it is

assumed that the channel has a high SNR, i.e., the primary source of

errors is ISI. Brief explanations of the theory and purposes of the

computer programs used in the filter design are found in the

appendices. The two optimization routines, revised-simplex linear
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programming and quadratic programming by the Wolfe algorithm, and

the fast Fourier transform (FFT) are discussed in App. A. The

operation of the various main programs used in the aforementioned

designs and the purposes of the various utility subprograms called

by the main design programs are described in App. B.



CHAPTER 2

TIME-DOMAIN DESIGN OF FIR DIGITAL FILTERS

Digital filters designed to have specified impulse responses

can be used in baseband communication systems for pulse shaping

and matched filters. For an ideal bandlimited channel ISI is

eliminated when the signaling pulse shapes are of the Nyquist [4]

class. Optimum noise performance is obtained using receiver filters

matched to the received pulses.

Often the desired continuous-time impulse response d(t) is

essentially zero outside some time interval NT s. Consequently,

the first.step in the time-domain design is to restrict the

desired response to NT s so that it can be approximated by a

FIR digital filter. A desired discrete-time response {d(n)}

is obtained from N uniformly spaced samples of d(t),

d(n) = d(nT - T) n = 0,1,...,N-l, (2.1)

where T is a time delay included to shift the desired response

out of negative time. The designer must choose the number of

samples N and the sampling interval T to represent the characteristics

of the desired impulse response.

At this point the design of the transversal filter realization

is complete since the N impulse-response samples are the filter

16
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tap gains. However, it may be possible to approximate {d(n)} accu-

rately using a frequency-sampling realization with fewer than N

multiplications, depending on the number of resonators R in the

design. The number of multiplications constrains either the oper-

ation speed or the equipment complexity of the filter. If the

multiplications are performed in sequence on one hardware multiplier,

the minimum sample time T is determined by the number of multipli-

cations and the speed of the multiplier. Alternatively, if the

multiplications are performed in parallel on N individual hardware

multipliers, the equipment complexity increases accordingly.

2.1 FREQUENCY-SAMPLING FILTER DESIGN ALGORITHM

The Minimax algorithm produces a filter whose impulse response

{h(n)} is a minimax approximation of the desired response {d(n)}.

The resonator coefficients are allowed to take on complex values and

the resonators are added to the design in the order of their

decreasing contribution to the solution. The number of resonators

R included in the design is increased until the approximation

error is acceptable.

The design algorithm chooses the filter coefficients {H(k)}

to minimize the maximum absolute difference Id(n)-h(n)l over all

n, i.e.,

Min Max Id(n) - h(n)l] . (2.2)

1110<), which is repeated as (<N-2.3), that h(n) can be

It was shown in (1.11), which is repeated as (2.3), that h(n) can be
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expressed in terms of the unknown frequency samples {H(k) =

X(k) + jY(k)}.

h(n) = X(0) + (-1)nX(N/2)+
N

(2.3)
2 N12-
N [X(k) cos(2kn/N) - Y(k) sin(2kn/N)].

k=l

Since R resonators are to be included in the filter design, only R

of the {H(k)} are allowed to have non-zero values, i.e., H(k) = 0

for all k which are not elements of the set {S(1),S(2),...,S(R)}.

Because (2.3) is a linear combination of the real and imaginary parts

of the non-zero filter coefficients, the minimization of (2.2) may be

expressed as the following linear programming (LP) problem:

Minimize: E

Subject to: h(n) + c > d(n) (2.4)
n = 0,1,...,N-1.

h(n) - e < d(n)

The optimal value of E is the maximum of the errors e(n) = h(n) - d(n)

over the N sample points, i.e.,

= Max Ie(n) . (2.5)
0<n<N-1

Equation (2.4) is solved using the revised-simplex linear program-

ming algorithm discussed in App. A.

The algorithm chooses which resonators to include in {S(i)}

using an iterative procedure. Starting with R = 0, resonators are

added to the design one at a time in the order of decreasing
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contribution to the solution until either R equals some specified

maximum allowable value or e is less than some acceptable value.

During each iteration resonators are considered candidates to be

added to the design in the order of the decreasing magnitudes of

their corresponding coefficients in {E(k)}, the DFT of {e(n)},

which is obtained using FFT techniques described in App. A. A

candidate is temporarily added to the design and (2.4) is solved.

If the value of e is reduced, the candidate is replaced by the next

candidate and (2.4) is solved again, etc. However, once the value

of c is increased, the previous candidate is permanently added to

the solution; and the next iteration begins with one less candidate

available for inclusion as the next resonator.

2.2 DESIGN EXAMPLES

Four examples are presented to illustrate the applicability of

the Minimax design algorithm. In each example a desired continuous

time pulse is given with an interval of time NT in which the approxi-

mation is to be made. Outside of this interval the pulse is very

close to zero and is so approximated. Inside the time interval

the pulse is sampled at N equally spaced points. For all four

examples a set of samples (N = 60) was considered sufficient to

accurately describe the pulse {d(n)}, which was supplied as input

to the Minimax algorithm. It was further assumed that practical

considerations [11] limited the maximum number of resonators to six,

i.e., R < 6. The filter output waveforms for the four examples are

illustrated in Fig. 2-1. The first three examples are useful as
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Fig. 2-1. Frequency-Sampling Filter Design Examples.
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PAM signaling pulses. The pulse-shaping filter would be used in a

baseband communication system with a channel modeled as ideal with

bandwidth sufficient to pass the spectral components of the trans-

mitted pulses. A weighted unit-pulse a(n)6(n) is applied to the

filter input every Tb s or every Bth-sample, i.e., Tb = BT, all

B-1 intermediate inputs being zero.

2.2.1 Asymmetric Partial-Response Pulse

The first example is an asymmetric partial-response pulse.

Using this type pulse permits signaling at a rate of twice the

channel bandwidth by allowing a controlled amount of ISI. In the

conventional baseband signaling scheme, where ISI is forced to zero

by requiring the received pulse to have zeros at all sampling times

about the peak, the signaling rate can not exceed the channel

bandwidth. The expression for the desired impulse response samples

for B = 12 is

d(n) = 2 sinc(C+0.5) + sinc(C-0.5) - sinc(C-1.5), (2.6)

where

C = (n - N/2)/B, (2.7a)

and

sinc(x) = sin(nx)/(wx). (2.7b)

These two definitions are also employed in the other three design

examples. The filter impulse response for the design with the

six resonators selected in the order {1,2,0,3,4,61 is shown in Fig.
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2-1(a). These samples differ from the desired samples by at most

0.0279. The design results for one through six resonators are

compared in Tables 2.1 and 2.2 with similar comparisons for the

other three examples. Notice that in this first example the filter

coefficients given in Table 2.1 included both real and imaginary

parts. At each iteration one new resonator is added, and the

coefficients of all the resonators currently in the design are

recalculated. The resonator added each time is the one which will

produce the smallest maximum error e, as listed in Table 2.2.

Because the frequency samples are complex valued, the time required

for a given iteration is considerably longer than the other examples.

2.2.2 Raised-Cosine Pulse

The second example is the raised-cosine pulse which has zero

crossings every Tb s measured with respect to the pulse peak. The

filter impulse response for R - 6 is shown in Fig. 2-1(b), and the

samples are given by (2.8) with a = 1. The value of a may range

from 0 to 1 and is the fraction by which the pulse bandwidth

exceeds the Nyquist bandwidth.

cos(airC)d(n) = sinc(C) 2 , (2.8)
(1 - 4 C2 )

where C is defined by (2.7a) with B = 10. Since the desired impulse

response is symmetric about its midpoint, it follows that the set

of frequency samples {H(k)} is real valued. Consequently, the time

required to perform an iteration is considerably less than the

general case as can be seen from Table 2.2.



TABLE 2.1

RESONATOR COEFFICIENTS FOR DESIGN EXAMPLES

ASYMMETRIC SYMMETRIC
PARTIAL RESPONSE RAISED COSINE PARTIAL RESPONSE RICKER WAVELET

R k X(k) Y(k) k X(k) k X(k) k X(k)
1 1 -31.831 -23.585 2 14.778 3 -29.527 2 -6.495

2 1 -32.439 -19.142 2 5.892 3 -18.644 2 -6.495
2 19.148 3.878 1 -13.733 2 26.573 1 4.108

3 1 -34.029 -18.343 2 9.809 3 -23.286 2 -6.127
2 20.310 5.260 1 -8.670 2 21.362 1 4.205

0 22.913 0.0 0 9.878 4 8.182 3 2.484

4 1 -34.184 -18.342 2 7.282 3 -21.863 2 -6.120
2 18.998 4.767 1 -9.300 2 21.166 1 4.207

0 22.778 0.0 0 9.927 4 8.343 3 2.501
3 2.337 0.651 3 -5.558 1 -8.424 4 -0.428

5 1 -34.243 -18.343 2 7.478 3 -21.813 2 -6.123
2 18.918 4.769 1 -9.314 2 21.593 1 4.198

0 22.724 0.0 0 9.979 4 8.195 3 2.498

3 1.339 0.428 3 -4.986 1 -8.409 4 -0.434
4 1.551 0.289 4 2.486 6 0.230 5 -0.012

6 1 -34.392 -18.328 2 7.506 3 -21.794 2 -6.123
2 19.105 4.801 1 -9.327 2 21.624 1 4.200

0 22.416 0.0 0 10.004 4 8.111 3 2.501
3 1.724 0.484 3 -4.998 1 -8.434 4 -0.429
4 0.921 0.178 4 2.512 6 0.169 5 0.015
6 0.597 0.103 5 -0.675 7 0.157 6 0.015



TABLE 2.2

MINIMAX ERROR AND COMPUTATION 'TIME FOR DESIGN EXAMPLES

ASYMMETRIC SYMMETRIC
PARTIAL RESPONSE RAISED COSINE PARTIAL RESPONSE RICKER WAVELET

R c Time (s) E Time (s) c Time (s) E Time (s)

1 1.061 9.73 0.507 3.15 1.014 3.03 0.227 4.27

2 0.443 15.93 0.346 3.96 0.493 3.97 0.0897 4.69

3 0.0754 25.12 0.219 3.96 0.242 4.64 0.0159 5.66

4 0.0487 28.92 0.0965 4.60 0.00971 4.34 0.00126 5.39

5 0.0358 44.73 0.0248 4.97 0.00798 4.70 0.000931 5.58

6 0.0279 53.82 0.00067 8.32 0.00555 6.71 0.000758 9.95
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2.2.3 Symmetric Partial-Response Pulse

The third example is a symmetric pulse of the partial-response

type which has no spectral energy near dc. The desired impulse

response samples are given by

d(n) = -sinc(C + 2) + 2sinc(C) - sinc(C - 2), (2.9)

where C is defined by (2.7a) with B = 6. Notice from Table 2.1

that Resonator #0 was not included by the design algorithm and that

the resonators were chosen in the order {3,2,4,1,6,7} reflecting

the bandpass spectrum of this pulse.

2.2.4 Matched Filter for Ricker Wavelet

In this example it is desired to design a matched filter for

a Ricker seismic wavelet [15]. The expression for the desired filter

impulse response samples is

d(n) - - (K-0.5) exp(-K), (2.10)

A 2where K = [0.8587(2n/N-1)] . Since this desired response is also

symmetric, the design calculations are simplified once again as

reflected in the reduced computation times given in Table 2.2.

2.3 COMPARISON OF MINIMAX AND LINPO DESIGNS

Since this study is an extension of previous work by Houts

and Burlage [6] which utilized a time-domain design linear-programming

algorithm Linpo, the two algorithms will be compared. The Minimax

and Linpo algorithms are compared on the basis of the procedure

steps outlined in Table 2.3, the features listed in Table 2.4, and
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by comparing solutions to the same problem as presented in Table

2.5. The Minimax algorithm is able to solve more general problems

because of the use of complex-valued coefficients. It is simpler

to use because it is a three-step procedure and relies less on the

user's judgement. It produces a more efficient filter because it

selects the most needed resonators. In contrast, the LINPO

solution for the symmetric partial-response example contained Reso-

nators #0 and 5 even though their coefficients were essentially

zero. Furthermore, the Minimax algorithm produces a filter whose

impulse response is a more accurate approximation of the desired

pulse.
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TABLE 2.3

COMPARISON OF LINPO AND MINIMAX PROCEDURE STEPS

LINPO MINIMAX

Determine the time interval Determine the time interval
NT for approximating the NT for approximating the
specified impulse response specified impulse response
d(t) and select either the d(t) and select either the
sampling time T or the sampling time T or the
number of samples N. number of samples N.

Select critical points Determine the set of N samples
in the pulse and specify {d(n)} for the desired pulse.
LP objective function
and set of constraints.

Determine R based on
knowledge of the pulse
spectrum or by trial and
error.

Calculate {X(k)} using Calculate {H(k)} using
Linpo (if possible). Minimax algorithm until
Calculate {h(n)} and either e is acceptable or
compare with desired R reaches the allowable
pulse. maximum.

If results are not
satisfactory, change
either the set of
constraints, N, T,
or R and try again.



28

TABLE 2.4

COMPARISON OF LINPO AND MINIMAX FEATURES

LINPO MINIMAX

Desired pulse shapes must Pulse symmetry is not
be symmetric about necessary because of complex-
midpoint. valued filter coefficients

although symmetry sim-
plifies computations.

Filter output may not Filter output is a minimax
approximate desired approximation of desired
pulse except at con- pulse over all N sample
strained points (%N/B). points.

Algorithm uses resonators Algorithm chooses resonators
in numerical order starting in order of decreasing
at dc, H(0), and requires contribution to solution.
user to estimate the User may specify maximum
number of resonators R. number.

Algorithm does not always Algorithm always produces a
produce a solution, solution although e may be
depending on the user's large.
choice of LP objective
and constraints.

An extra step is required Value of E after a solution
to calculate {h(n)} and is a measure of the accept-
determine its acceptability. ability of the approximation.
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TABLE 2.5

COMPARISON OF LINPO AND MINIMAX SOLUTIONS

RAISED COSINE SYMMETRIC PARTIAL RESPONSE
N = 60, R = 6 N = 50, R = 7

LINPO MINIMAX LINPO MINIMAX
k X(k) X(k) X(k) X(k)

0 10.000 10.000 0.000

1 -9.330 -9.327 -6.910 -7.019

2 7.500 7.506 18.090 18.025

3 -5.000 -4.998 -18.090 -18.202

4 2.500 2.512 6.867 6.798

5 -0.670 -0.675 -0.000

6 ---- ---- 0.043 0.086

7 ---- ---- ---- 0.094

8 ---- ---- ---- 0.102.

E 0.0012 0.00067 0.0168 0.0056



CHAPTER 3

TIME-DOMAIN EQUALIZER DESIGN

This chapter deals with designing a digital equalizer to

produce a specified response at the output of a known channel. The

method used in this chapter is similar to that of Chapter 2 except

that the channel between the equalizer and the receiver is no

longer assumed to be ideally bandlimited with constant amplitude

and linear phase in the passband.

3.1 THE CHANNEL MODEL

Since time-domain specifications are to be placed on the

channel output, it becomes necessary to derive an expression for

the channel output y(t) as the convolution of the impulse responses

of the channel cT(t) and equalizer h(t). The digital equalizer's

discrete-time output {h(n)} can be written as a continuous-time

expression using the unit impulse 6(t), i.e.,

N-1
h(t) = E h(n) 6(t - nT). (3.1)

n=O

Consequently, the channel output y(t) is

30
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N-i t
y(t) = h(n) (x - nT) c T(t - x) dx

n=o f
(3.2)

N-1
= h(n) cT(t - nT).

n=O

The channel output is now an explicit function of the filter

impulse-response samples. The channel cT(t) used in (3.2) consists

of a D/A converter in cascade with a channel model c(t) as shown

previously in Fig. 1-1. The D/A converter is a zero-order hold

with impulse response

gD(t) = u(t) - u(t - T). (3.3)

Hence, c(t) is given by the convolution of gD(t) with c(t), i.e.,

0 t<O

cT(t) = c(x) dx 0<t<T (3.4)

It c(x) dx t>T.
t-T

Two channel models were used to test the time-domain equalizer

design procedure. One channel model was an Mth-order lowpass filter

which simulated channels with dc response, while the other was a

model of a telephone channel which has a bandpass characteristic.

Since the design goal was to reduce ISI in a high SNR channel, noise

was not included in the design models. However, the increased noise

margin as a result of channel equalization was noted. The channel

models were normalized to have a break-point frequency f = 1 Hz,c
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which is assumed to be the Nyquist bandwidth, i.e., 1/2Tb. Thus

the minimum baud interval is Tb = 0.5 s.

3.1.1 Mth-Order Lowpass Filter

The first channel model is an Mth-order lowpass filter used

by Houts and Burlage [6] with impulse response

(M-1)

The corresponding frequency characteristic is

C(f) = + . (3.6)
(1 + j f)

The total channel impulse response including gD(t) is

It M

T( t-T (M-1)! x exp(-2rx) u(x) dx

(3.7)

= (lM- 1  + (M-2)1 + ... + 1 (-exp(-2x))] M

(- Max(t-T,0)

This model, although not very realistic, is included as a basis

for comparison with the results of Routs and Burlage. The impulse

response c(t) and amplitude characteristic IC(f)l of the 2nd- and

6th-order channels are given in Fig. 3-1. The impulse-response

main lobes have nominal time delays Td of 0.20 and 0.80 s respectively.



33

c(t) IC(f)
2.31 1.0"

0.0 -- I 0.0
0 1 2 3 4 t 0 1 2 f

(a) 2nd-Order Channel
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(b) 6th-Order Channel

Fig. 3-1. Impulse Response and Amplitude Characteristic
for Mth-Order Lowpass Channel Model.
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3.1.2 Telephone Channel

The second channel model is a more realistic model based on

measurements of a 2400 baud VSB telephone channel by Westcott [19].

Values of the impulse response at baud intervals and intermediate

points were taken from the measurements and used in a Spline inter-

polation routine [20] to produce a continuous approximation to c(t).

The impulse response and corresponding amplitude characteristic

IC(f) , which have been scaled to correspond with a 1 Hz break-

point frequency, are shown in Fig. 3-2. The main lobe of the impulse

response is observed to have a 2.5 s nominal time delay.

3.2 EQUALIZER DESIGN ALGORITHM

It is desired to design a FIR digital equalizer using either

the transversal or frequency-sampling structure such that the

channel output y(t) approximates a specified pulse delayed by Td s.

The specified pulses are of the raised cosine or partial response

classes, which were described in Chapter 2, and the approximation is

obtained using the Minimax algorithm. The linear programming'(LP)

problem to be solved is a modification of (2.4), i.e.,

Minimize: E

Subject to: y(nT + Td) + > d(n) (3.8)
n =- 0,1,...,N-1.

y(nT + Td) - e < d(n)

As is Chapter 2, N is the number of samples and T is the time

between samples, while Td is the nominal time delay introduced by

the channel.
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Fig. 3-2. Telephone Channel Model.
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3.2.1 Transversal Equalizer

Using (3.2) the LP problem (3.8) can be expressed in terms of

the equalizer impulse-response samples.

Minimize: E

N-1

Subject to: N [h(k) cT((n - k)T + Td)] + e > d(n) (3.9)
k=0

N-1
N- [h(k) cT((n - k)T + Td) - < d(n)
k=O

n = 0,1,...,N-1.

The solution to (3.9) is the set of tap gains {h(n)} of the trans-

versal filter. The number of constraints is restricted to 120, i.e.,

N < 60, because of computer core-storage limitations.

3.2.2 Frequency-Sampling Equalizer

An expression for the channel output in terms of the frequency-

sampling filter coefficients can be found by substituting (1.11) into

(3.2) and exchanging the order of summation.

N-1 N-1

y(t) = X(0) E cT(t - nT) + X(N/2) (_1)n cT(t -nT)n=0 N n=0

+ X(k) N- cos(2nkn/N) T(t - nT) (3.10)
k=1 n=0

N-1
- Y(k) E sin(27kn/N) c(t - nT)

n=0

Linear programming can be employed since the output is expressed as

a linear combination of the variables X(k) and Y(k), i.e., the real
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and imaginary parts of H(k) respectively. The LP problem (3.8)

is solved with y(t) defined by (3.10) to produce the filter coef-

ficients {H(k)}. Recall that only R of these coefficients are

allowed to have non-zero values. The iterative procedure of Section

2.1 is used to select the R resonators to be included in the solution.

3.3 DESIGN EXAMPLES FOR LOWPASS CHANNELS

Design examples using the lowpass channels of 2nd- and 6th-

order are included for comparison with the Linpo-generated designs

of Houts and Burlage [6]. In particular, Linpo results are compared

with Minimax designs of transversal and frequency-sampling filters

and a transversal design using a restricted Minimax procedure.

The desired channel output is the raised-cosine pulse (a = i).

The number of samples N is 30, and baud time Tb is 0.5 s. Note

that for this baud time the nominal 1 Hz bandwidth of the channel

is not adequate for the spectrum of the raised-cosine pulse since

its normalized bandwidth is (1 + a)/( 2Tb) = 2 Hz. The attenuation

is particularly severe for the 6th-order channel. However, this

baud time value was selected in order to make the aforementioned

comparison.

The Linpo and Minimax designs were compared on the basis of

the number of multipliers M required in the implementation, the

transmitted energy Et, and the accuracy of the channel output.

The transmitted energy is defined as the energy in the D/A

converter output when a unit pulse is applied to the equalizer

input, i.e.,
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N-1
Et = T E h2 (n). (3.11)

n=O

Two accuracy criteria are used, namely the maximum error e and the

total peak distortion D. The maximum error e is defined as the

maximum absolute difference between one of N channel output samples

y(Td + nT) and the corresponding desired pulse sample d(nT), i.e.,

= Max Iy(Td + nT) - d(n) , (3.12)
O<n<N

For some of the designs the difference between the channel output and

the desired pulse is known only at the baud times. For these cases

e is the maximum difference at the baud times, i.e., replace nT

in (3.12) by kTb where 0<k<NT/Tb. The total peak distortion D

was defined by (1.3) in terms of an infinite series; however, since

the channel is causal, there is no contribution to D before time t = 0.

Also, the channel output after time t = Td + 2NT is negligible;

so D is redefined as

L
D = y(nTb '

n=0O

where (3.13)

LT Td + 2NT.

3.3.1 Transversal Designs

The design results for the Linpo and Minimax transversal

equalizers are listed in Table 3.1. The Linpo designs for the 2nd-

and 6th-order channels used 12 and 15 constraint equations



TABLE 3.1

COMPARISON OF DESIGN RESULTS FOR LOWPASS CHANNELS

2ND-ORDER CHANNEL 6TH-ORDER CHANNEL

DESIGN
ALGORITHM E Et D M Et D M

Linpo
Transversal * 2.59 2.4E-9 3 * 150.1 0.015 15

Minimax
Transversal 0.00011 0.74 0.0024 28 0.0017 21.4 0.025 15

Restricted-Minimax
Transversal * 2.44 0.00038 6 * 15.7 0.161 6

Linpo
Frequency-Sampling * 14.25 0.367 11 NO SOLUTION FOUND

Minimax
Frequency-Sampling 0.00033 0.73 0.0032 16 0.022 12.0 0.030 16

* e = 0.0 at baud times
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respectively. Although the design constraints were met, the

resulting channel outputs were not of the raised-cosine shape.

The Linpo channel output along with the Minimax channel output is

shown in Fig. 3-3 for the 6th-order channel. The latter clearly

has the desired raised-cosine shape. From Table 3.1 one observes

that the Minimax solutions have smaller Et values while the Linpo

solution for the 2nd-order channel has fewer multipliers. In an

effort to reduce the number of multipliers required, the Minimax

algorithm was modified to formulate a LP problem which was similar

to that of the Linpo algorithm. The constraints of (3.8) which

were not at baud times were removed, and the tap gains were

restricted to have alternating signs. The Linpo algorithm used

alternating signs as a means of bypassing the LP restriction of

non-negative variables. Predictably, these design restrictions

reduced the number of multipliers M; however, the transmitted energy

Et and total peak distortion D varied considerably. It is

apparent that the Restricted-Minimax algorithm has decided advantages

over both the Linpo and Minimax transversal algorithms, particularly

for difficult equalization problems like the 6th-order channel

example. The equalized channel has a normalized eye opening of

0.839 while requiring only 10% of the energy specified by the

Linpo solution and two-fifths the number of multipliers specified

by the Minimax algorithm.

3.3.2 Frequency-Sampling Designs

Frequency-sampling designs by the Minimax and Linpo algorithms

are also listed in Table 3.1. However, the Linpo frequency-sampling
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Fig. 3-3. Comparing Receiver Waveforms for Linpo and Minimax
Transversal Equalizers with 6th-Order Channel.
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algorithm is unsuitable as a tool for equalizer design because its

alternating sign restriction implies the equalizer has linear phase

and a symmetric impulse response. However, neither of these charac-

teristics apply to the typical channel; consequently, it is

impossible for such an equalizer to adequately compensate for the

channel distortion. In fact, the Linpo algorithm could not produce

a solution for the 6th-order channel example. Alternatively, the

Minimax frequency-sampling algorithm produced equalizers with

acceptable accuracies and smaller transmitted energies than any of

the previous transversal-filter algorithms. Each channel model

was compensated with a frequency-sampling equalizer using six

resonators. Although these designs require 16 multipliers, Resonator

#0 being first-order, the additional cost is more than offset by

the reduced energy and distortion figures. Furthermore, the Minimax

solution also yielded a raised-cosine output, unlike the Linpo

transversal or frequency-sampling algorithms. Based on the data

presented in Table 3.1, the Minimax frequency-sampling algorithm is

judged .-to be a viable alternative to transversal designs.

3.4 COMPARISON OF FREQUENCY-SAMPLING AND TRANSVERSAL DESIGNS
FOR A TELEPHONE CHANNEL MODEL

Four equalizer designs are presented in this section to

demonstrate the applicability of the Minimax frequency-sampling

algorithm to equalizer design for the telephone channel model

described in Section 3.1.2. Results are compared with transversal

equalizers designed by the Minimax and Restricted-Minimax algorithms.

The criteria for comparison are once again the maximum error c,
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peak distortion D, transmitted energy Et, and number of multipliers

M. The specified received-pulse waveforms are the raised cosine

(a - 0,1) and the partial response, both symmetric and asymmetric,

as described in Chapter 2. For the a = 1 raised-cosine pulse a

baud time Tb = 1.0 s was used so that the pulse spectrum would not

extend beyond 1 Hz. Similarily, Tb = 0.5 s represented an equivalent

choice for the remaining pulses. For the raised-cosine (a = 0)

and asymmetric partial-response pulses the number of samples per

baud interval B was reduced to six so that the limited number of

samples available (N = 60) would cover more of the significant

values of the pulses.

3.4.1 Frequency-Sampling Designs

The resonator coefficients for the frequency-sampling design

examples are listed in Tables 3.2 and 3.3 for R = 1,2,...,6. The

maximum number of resonators R = 6 was selected because it gave

accurate results with a moderate number of multipliers. The accuracy

and energy figures for the examples as well as the design calcu-

lation times are given in Table 3.4. In each design as the number

of resonators increases, the maximum error c decreases. The total

peak distortion values compare quite favorably with D = 0.70 for

the unequalized channel. Examination of the design results in Table

3.4 reveals that the telephone channel model can be effectively

equalized using the Minimax frequency-sampling technique.

3.4.2 Transversal Designs

The results for the two transversal equalizer design techniques

are given in Table 3.5. The number of multipliers for the Minimax
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TABLE 3.2

FREQUENCY-SAMPLING EQUALIZER DESIGNS
FOR RAISED-COSINE PULSES (N = 60)

a - 1.0 a = 0.0
Tb = 1.0 Tb = 0.5

B = 10 B 6

R k X(k) Y(k) R k X(k) Y(k)

1 1 -34.622 0.479 1 4 35.567 -9.582

2 1 -23.754 -14.141 2 4 15.360 2.358
2 10.889 9.834 2 25.962 16.149

3 1 -14.563 -7.163 3 4 14.075 -2.774
2 20.191 9.708 2 20.369 5.977
0 24.164 0.0 1 -11.752 -5.748

4 1 -17.048 -8.292 4 4 18.272 -3.102
2 14.234 6.968 2 16.435 5.903
0 22.068 0.0 1 -7.217 -4.736
3 -12.630 -2.137 3 -8.510 0.764

5 1 -16.796 -8.509 5 4 13.903 -3.206
2 14.890 6.787 2 13.742 4.721
0 22.060 0.0 1 -9.965 -5.693
3 -10.896 -2.217 3 -11.611 0.154
4 5.397 -0.823 0 13.748 0.0

6 1 -16.933 -8.537 6 4 14.050 -4.201
2 14.737 6.731 2 12.815 4.362
0 21.920 0.0 1 -10.701 -5.918
3 -11.073 -2.289 3 -12.425 -0.338
4 5.081 -0.861 0 13.034 0.0
5 -1.304 0.001 5 -17.636 2.357
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TABLE 3.3

FREQUENCY-SAMPLING EQUALIZER DESIGNS FOR
PARTIAL-RESPONSE PULSES (B - 6, Tb - 0.5)

ASYMMETRIC SYMMETRIC

R k X(k) Y(k) R k X(k) Y(k)

1 3 -20.776 -65.241 1 2 71.001 17.249

2 3 -21.843 -39.589 2 2 52.864 18.066
2 4.854 51.409 3 -47.284 -2.094

3 3 -7.815 -37.631 3 2 48.234 16.931
2 6.898 39.538 3 -48.052 -1.132
1 -11.912 -32.229 4 17.357 -5.541

4 3 -9.026 -34.788 4 2 46.569 17.263
2 3.057 43.970 3 -45.661 0.557
1 -8.716 -27.827 4 17.560 -4.612
4 8.223 23.006 1 -13.817 -7.393

5 3 -8.643 -37.768 5 2 46.351 17.169
2 3.630 41.195 3 -45.962 0.517
1 -9.088 -29.947 4 17.221 -4.485
4 8.512 17.222 1 -13.901 -7.519
0 26.090 0.0 0 1.341 0.0

6 3 -8.572 -36.810 6 2 46.307 17.142
2 3.688 41.600 3 -45.949 0.469
1 -9.138 -29.830 4 17.389 -4.687
4 9.227 .21.264 1 -13.942 -7.531
0 26.021 0.0 0 1.313 0.0
5 0.099 -11.318 5 -1.447 0.554



TABLE 3.4

FREQUENCY-SAMPLING EQUALIZER DESIGN RESULTS

RAISED COSINE RAISED COSINE
(a = 1, B= 10, Tb =1.0) (a = 0, B = 6, Tb = 0.5)

R Et D TIME (s) R e E D TIME (s)

1 0.494 3.996 1.614 14.99 1 0.467 3.769 3.107 17.15
2 0.281 3.265 1.186 22.43 2 0.388 3.267 2.654 23.39
3 0.205 3.524 0.890 25.21 3 0.269 2.299 1.844 30.67
4 0.0881 3.394 0.281 34.46 4 0.192 2.211 1.381 40.16
5 0.0181 3.394 0.076 55.21 5 0.0972 2.155 0.958 50.54
6 0.00511 3.395 0.0311 73.84 6 0.0119 3.066 0.155 63.10

ASYMMETRIC PARTIAL RESPONSE SYMMETRIC PARTIAL RESPONSE
(B = 6 , Tb = 0.5) (B = 6, Tb = 0.5)

R E D TIME (s) R E Et  D TINE (s)

1 1.115 13.022 1.758 16.91 1 0.935 14.829 4.840 18.34
2 0.799 13.086 0.595 24.68 2 0.4302 14.892 1.378 26.95
3 0.507 11.857 1.151 30.67 3 0.2206 14.599 1.438 34.39
4 0.246 13.004 0.158 48.91 4 0.0167 14.242 0.176 52.53
5 0.0859 13.612 0.700 51.68 5 0.00866 14.232 0.188 52.59
6 0.0237 14.305 0.221 64.79 6 0.00267 14.246 0.114 62.22
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TABLE 3.5

TRANSVERSAL EQUALIZER DESIGNS

RAISED COSINE

ALGORITHM 
(a = 1, B = 10, Tb = 1.0)

M Et D Time (s)

Minimax 27 0.000675 6.138 0.0128 234.34

Restricted 6 0.532 11.147 0.0180 4.27
Minimax

RAISED COSINE
(a = 0, B = 6, Tb = 0.5)

M 6 Et D Time (s)

Minimax 29 0.000587 5.304 0.136 245.36

Restricted 10 0.0930 14.519 0.0620 5.42
Minimax

ASYMMETRIC PARTIAL RESPONSE
(B = 6 , Tb = 0.5)

M N Et  D Time (s)

Minimax 32 0.00105 31.834 0.105 298.72

Restricted 10 0.202 79.617 0.0963 5.44Minimax

SYMMETRIC PARTIAL RESPONSE
(B = 6 , Tb = 0.5)

M E Et  D Time (s)

Minimax 26 0.00130 30.821 0.0996 220.65

Restricted 10 0.176 79.408 0.158 5.57Minimax
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designs range from 26 to 32, and the required energy Et is approxi-

mately twice that of the corresponding frequency-sampling equalizer.

Although the Restricted-Minimax transversal equalizer designs

use fewer multipliers, the required energy is increased considerably

over its frequency-sampling counterpart without improving the

accuracy. Consequently, the frequency-sampling equalizer is judged

to be superior to the transversal equalizer designs.

3.5 EXAMPLE OF EQUALIZED DATA TRANSMISSION

Data transmission through the telephone channel was simulated

by a 15 bit pseudo-noise (PN) sequence both with and without equali-

zation. For the unequalized case a sequence of samples, each with

an energy Et and spaced 0.5 s apart, were applied to the channel

input. For the equalized case the data was represented by positive

and negative unit pulses, spaced 0.5 s apart, applied to the

equalizer input. The raised-cosine (a = 0) equalizer design was

used with N = 40 and B = 5. The energy in the equalizer impulse

response was Et. The channel outputs for both cases are shown in

Fig. 3-4. Notice that equalization has greatly increased the

noise margin in this example. The increase in normalized eye

opening from 0.120 to 0.933 represents a 17.8 dB SNR improvement.
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Fig. 3-4. Effect of Minimax Designed Equalizer on 15 Bit
PN Sequence Transmitted Over Telephone Channel.



CHAPTER 4

ENERGY-MINIMIZATION EQUALIZER DESIGN

The design of an equalizer in which ISI is constrained to a

given maximum level and transmitted energy is minimized is presented

in this chapter. For ISI-free transmission the composite frequency

characteristic of the transmitted pulse and channel must meet the

Nyquist criterion. This means that much of the transmitted energy

is forced through the channel at frequencies where the attenuation

is high in order to produce an overall flat spectrum for a band-

width W Hz. However, if a small amount of ISI were allowed, the

transmitted energy could be reduced.

4.1 ENERGY MINIMIZATION DESIGN

The Energy-Minimization design algorithm minimizes the

transmitted energy for a given e and some associated distortion D.

The channel output is constrained to not differ from the specified

waveform more than e for samples taken at the baud times.

4.1.1 Transversal Equalizer

The energy in the D/A converter output when a unit pulse is

applied to the equalizer is

50
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N-1
Et = T E h2 (n), (4.1)

n=O

where {h(n)} is the set of transversal filter impulse-response

samples or tap gains. The channel output constraints can also

be written in terms of the impulse-response samples using (3.2).

Since the energy function is quadratic and the output constraints

are linear, the energy minimization can be expressed as a quadratic

programming problem.

Minimize: Et

Subject to: y(nTb + Td) + e > d(nB) (4.2)

n = 0,1...,N/B.

y(nTb + Td) - E < d(nB)

The set {d(nB)} is the set of samples for the specified received

waveform taken at its zero crossings and/or baud times.

4.1.2 Frequency-Sampling Equalizer

The energy in the impulse response of the frequency-sampling

equalizer in cascade with the D/A converter can be expressed in

terms of the resonator coefficients by using (1.11) with (4.1).

t N 
N/

Et =1 X 2(0) + X2(N/2) + 2 N 2(k) + Y2(k)f. (4.3)k=l1

As in the transversal case this function is quadratic, and the

energy minimization is achieved using the quadratic programming

problem (4.2) with the channel output y(t) defined by (3.10).

The selection of which resonators to include in the design is not
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so straight forward as in the Minimax algorithm. There is no error

waveform {e(nT)} whose frequency components are related to the most

needed resonators. The choice can be made by a search based on know-

ledge of the spectra of the desired pulse and channel. However,

in this chapter the resonators used in the examples are the same as

those of the corresponding examples of Chapter 3. This choice of

resonators will give a fair comparison of the Minimax and Energy-

Minimization algorithms.

4.2 DESIGN EXAMPLES

Energy-Minimization designs of transversal and frequency-

sampling equalizers are compared with Minimax transversal and

frequency-sampling designs based on the number of multipliers M,

the transmitted energy Et, and the accuracy criteria (D and c)

discussed in Section 3.3. The specified channel outputs are the

raised-cosine (a = 0,1) and partial-response (asymmetric and

symmetric) pulses used in earlier comparisons. Each of these

pulses has constraint equations specified at time samples corre-

sponding to zero crossings and/or baud times for use in (4.2),

the Energy-Minimization program. The time points and the pulse

values at the points are tabulated in Table 4.1.

4.2.1 Transversal Designs

The transversal equalizers are designed using N = 30, i.e.,

the number of multipliers M < 30. Design results for the four

aforementioned waveforms are found in Table 4.2, where the channel

is the telephone channel model described in Section 3.1.2.
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TABLE 4.1

CONSTRAINT POINTS FOR ENERGY-MINIMIZATION DESIGNS

RAISED COSINE, a = 1 RAISED COSINE, a = 0

t d(t + Td) t d(t + Td)

0.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0
1.0 0.0 1.0 0.0
1.5 0.0 1.5 0.0
2.0 0.0 2.0 0.0
3.0 1.0 2.5 1.0
4.0 0.0 3.0 0.0
4.5 0.0 3.5 0.0
5.0 0.0 4.0 0.0
5.5 0.0 4.5 0.0
6.0 0.0 5.0 0.0

ASYMMETRICAL SYMMETRICAL
PARTIAL RESPONSE PARTIAL RESPONSE

t d(t + Td) t d(t + Td)

0.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0
1.0 0.0 1.0 0.0
1.5 0.0 1.5 -1.0
2.0 2.0 2.0 0.0
2.5 1.0 2.5 2.0
3.0 -1.0 3.0 0.0
3.5 0.0 3.5 -1.0
4.0 0.0 4.0 0.0
4.5 0.0 4.5 0.0
5.0 0.0 5.0 0.0



TABLE 4.2

COMPARISON OF TRANSVERSAL EQUALIZER DESIGN EXAMPLES

C{ANNEL DESIGN e E D TIME (s)
OUTPUT ALGORITHM
PULSE-

-8
Minimax 5.49x10 8  3.405 0.0109 49.35

Raised
CosineCosine Energy -8
S= 1 Energy 4.47x10-8  2.691 0.0238 171.83

Minimization

-7
Minimax 1.68x10 7  3.203 0.138 42.59Raised

CosineCosine Energy 3

a =0 Minimizergy 4.00x0 - 3  2.858 0.131 189.04

Partial Minimax 3.35x10-7  14.251 0.0928 46.95Partial
Response Energy -8
Symmetric 2.98x0 - 8  14.196 0.0946 247.15

Minimization

-7
Partial Minimax 3.28x10 7  14.330 0.112 48.50

Partial
Response -4Response Energy 5.00xlO 14.174 0.110 247.41

Asyetric Minimization
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Corresponding results for the Minimax transversal equalizer are

included for comparison. It is significent to note that for every

example the Energy-Minimization design yielded a smaller transmitted

energy at the cost of a considerable increase in computer time. Two

of the example pulses were more difficult to equalize, i.e., the

Minimax designs had D > 0.1. However, the Energy-Minimization

designs for these examples yielded slightly lower total peak

distortions.

4.2.2 Frequency-Sampling Designs

Two channel models are used for the frequency-sampling examples.

One is the aforementioned telephone channel model, and the other is a

6-pole bandpass filter (BPF) with bandedges of 300 and 3400 Hz.

The impulse response for the bandpass filter was derived from

measurements of the cross-correlation with white noise for 100

points [21]. These data values were connected to form a continuous

function using Spline interpolation [20], and the time interval

was scaled to correspond to a BPF with an upper bandedge of 1 Hz.

The impulse and amplitude response of this BPF channel model are

given in Fig. 4-1.

The results for Minimax and Energy-Minimization designs of

frequency-sampling equalizers using six resonators (M = 16) are

listed in Tables 4.3 and 4.4. Notice that in almost all cases

the Energy-Minimization design has smaller e, Et, and D, and

requires less computation time. Since the Energy-Minimization

algorithm places fewer constraints on the channel output wave-

form, its channel output may not approximate the specified
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1.32
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(b) Amplitude Characteristic

Fig. 4-1. Bandpass Filter Channel Model.



TABLE 4.3

COMPARISON OF FREQUENCY-SAMPLING EQUALIZER
DESIGN EXAMPLES FOR TELEPHONE CHANNEL

CHANNEL DESIGN e E D TIME (s)
OUTPUT ALGORITHM
PULSE

Raised Minimax 0.00511 3.395 0.0311 73.84

Cosine
a = 1 Energy 0.00400 3.382 0.0292 38.22

Minimization

Minimax 0.0119 3.066 0.115 63.10Raised
Cosine
a = 0 MiEnergy 0.00400 2.885 0.114 36.71

Minimization

Partial Minimax 0.00267 14.246 0.114 62.22
Partial
Response Energy
Symmetric MiEnergy 0.00200 14.198 0.113 51.60

Minimization

Partial Minimax 0.0237 14.305 0.221 64.79

Response
Asymmetric Energy 0.0150 14.184 0.219 45.33Asymmetric Minimization 0.0150 14.184 0.219 45.33 -



TABLE 4.4

COMPARISON OF FREQUENCY-SAMPLING EQUALIZER
DESIGN EXAMPLES FOR BPF CHANNEL

CHANNEL DESIGN C E D TIME (s)
OUTPUT ALGORITHM
PULSE

Raised Minimax 0.0798 7.632 0.510 73.47

Cosine
a M= 1 Energy 0.0640 7.497 0.531 36.40

Minimization

Raised Minimax 0.0322 2.116 0.676 61.37

Cosine Energy
a = 0 Energy 0.0300 1.765 0.631 54.04

Minimization

Partial Minimax 0.0200 2.290 0.233 64.34

Response Energy
Symmetric Minimization 0.0100 2.236 0.220 40.26

Partial Minimax 0.154 7.312 1.591 65.95

Response Energy
Asymmetric Minimzation 0.100 6.361 1.175 46.63Minimiz ation
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pulse as closely as the Minimax design. However, the small difference

allows the Energy-Minimization designs to achieve lower ISI with

less transmitted energy. The equalizer impulse response and the

channel output for the Energy-Minimization design using the raised

cosine (a = 0) specification and the- telephone channel model is

given in Fig. 4-2.

4.2.3 Distortion vs. Energy Trade-off

The values of e needed by the Energy-Minimization algorithm

for both transversal and frequency-sampling designs were chosen

by successive approximation. Further, the choice of e gives the

designer a trade-off parameter between D, the level of ISI in the

received signal, and Et, the energy in the transmitted signal.

By a proper choice of c based on the design considerations of a

particular communication system, its error performance can be enhanced.

As an illustration the frequency-sampling equalizer design for

raised cosine (a - 0) using the BPF channel model was run for

several values of e, and the results plotted in Fig. 4.3. As

E was increased, Et was reduced at the cost of increased dis-

tortion D. As e was reduced the opposite occurred. The isolated

point represents the e, Et, and D values for the Minimax design.

Notice that the Et and D curves cross below this point. Based upon

the results presented in this section, it is concluded that while

the Minimax algorithm produces useful designs, for many specified

outputs and channels the Energy-Minimization algorithm will produce

designs with both lower distortion and transmitted energy.



h (n) 60
2.40-

0.0 1 n

-1.04-

(a) Frequency-Sampling Equalizer Impulse Response

y t)
1.00

. 3 4 6 \7 8

-.21

(b) Telephone Channel Output ("Raised Cosine, a = 0)
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Energy-Minimization Algorithm.
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4.3. EXAMPLE OF EQUALIZED DATA TRANSMISSION

Data transmission through the telephone channel was simulated

by a 15 bit PN sequence as discussed previously in Section 3.5.

For the unequalized case a sequence of samples of energy Et was

applied to the channel input, while for the equalized case the data

were represented by positive and negative unit pulses applied to

the equalizer input. The Energy-Minimization design with the

raised cosine (a = 0) specification was used. For both cases

Tb = 0.5, N = 40, B = 5, and the energy input per bit to the

telephone channel was Et. The channel outputs are given in Fig. 4-4.

The effect of equalization is an even greater increase in the noise

margin than that using the Minimax-designed equalizer. The increase

in normalized eye opening from 0.110 to 0.955 represents an 18.8 dB

SNR improvement as compared with the 17.8 dB improvement for the

Minimax design.
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CHAPTER 5

SUMMARY AND RECOMMENDATIONS

The basic effort of this study was to develop design algorithms

for FIR digital filters which could effectively be used for pulse

shaping and channel equalization. In Chapter 2 the Minimax

algorithm was developed to design a frequency-sampling filter with

an impulse response which approximated a specified impulse response

in a minimax sense. No restrictions of symmetry were placed on the

filter impulse response since the generated resonator coefficients

were complex-valued. Also, the algorithm produced an efficient

filter by selecting the resonators to include in the design according

to their contribution to the filter output. The applications

given for such filters were equalization of an unknown channel,

assumed ideal bandlimited, and matched filter reception. It

was demonstrated that a frequency-sampling filter with only a

small number of resonators could accurately approximate the specified

impulse response. Further, the Minimax algorithm was compared with

the Linpo algorithm, a design procedure by Houts and Burlage [6].

The advantages of the Minimax algorithm are listed in Table 2.4.

In Chapter 3 the Minimax algorithm was extended to design

transversal and frequency-sampling equalizers for known but not

ideal channels. The comparison of Minimax and Linpo designs using
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lowpass channel models showed that the Minimax designs produced

accurate approximations of the specified pulse with much less

transmitted energy. Transversal and frequency-sampling filter

designs by the Minimax algorithm were also compared using a

telephone channel model with the t'ransversal designs being more

accurate inside the approximation interval. However, the frequency-

sampling designs had lower transmitted energy and total peak

distortion figures. The designs would have been equivalent if

the frequency-sampling designs had included all N/2 + 1 resonators.

The price paid for including only six was slightly larger

minimax error inside the approximation interval, but the benefits

were a smaller transmitted energy and less ISI outside the

approximation interval.

In Chapter 4 a design algorithm was developed which minimized

the transmitted energy while constraining the maximum error e at

any sampling point. This Energy-Minimization algorithm was compared

to the Minimax algorithm for both transversal and frequency-

sampling equalizers. Most of the Energy-Minimization designs

required less transmitted energy and provided lower total peak

distortion than the corresponding Minimax designs. Also, the spec-

ification of e provided a means of compromise between the energy

required and the resultant distortion in the received waveform.

A recommended area for further research is the modification

of the Energy-Minimization design algorithm for frequency-sampling

equalizers to include a better method of resonator selection.

Since there is no error signal whose frequency components could
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be related to the needed resonators as in the Minimax algorithm,

the choice of which resonators to include in the design is not

so straightforward. Possibly an iterative procedure using the

value of the channel output at the constraint points could be

investigated.



APPENDIX A

OPTIMIZATION AND FFT PROGRAMS

The optimization and FFT subroutines used in the Minimax

and Energy-Minimization algorithms are discussed in this section.

The optimization techniques are linear and quadratic programming.

Brief explanations of the three subroutines are given with

emphasis on their applicability to digital filter design. Further

information can be found in the literature [22-24].

A.1 REVISED-SIMPLEX LINEAR PROGRAMMING

The linear programming (LP) problem is to minimize an

objective function Z which is linear in the N unknown variables

{x(n)} subject to a set of M linear constraints.

N
Minimize: Z = p(n) x(n),

n=l1
(A.1)

N
Subject to: , a(m,n) x(n) = b(m) m = 1,2,...,M

n=l

x(n) > 0 n = 1,2,...,N.

It is possible to express a constraint set containing inequality

constraints in the form of (A.1) by adding additional variables.

It is also possible to use LP to solve a problem with unrestricted

67
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variables. Let the orginal variables be {y(n)}, n = 1,...,N/2.

These are written as differences of the N non-negative variables

{x(n)}, i.e.,

y(n) = x(n) - x(n + N/2) n = 1,...,N/2 . (A.2)

The basic computational tool used to solve the LP problem is the

Simplex method which examines a sequence of feasible solutions to

(A.1), each one with a smaller Z, which terminates with the minimum

Z if one exists. To each solution there corresponds a basis matrix

B, i.e., a set of linearly independent columns of A, the matrix

whose elements are {a(m,n)}. The variables whose columns are in

B have non-zero values while all other variables are zero. The

technique adds and removes variables from the basis in moving

from one feasible solution to the next by pivoting. The variable

to be added or removed is selected according to its contribution

to improving the solution.

The Revised Simplex method performs the same functions as

the original simplex, yet it has several advantages. In the

Revised Simplex method all the information needed to proceed

-l
from one solution to the next is calculated using B- . Thus

pivoting involves only the columns in B rather than all those

in A, and the required computer storage is reduced. Also, for

LP problems with a large number of zero elements in A, the number

of computations is reduced. In addition, at any solution step

the accuracy lost because of roundoff error can be restored by

reinverting the basis. The Revised Simplex program used for this
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study was SIMPDX, a FORTRAN subroutine written by Diderrich [25].

It was chosen because it quickly and accurately solved the large

LP problems necessary for the Minimax design algorithm.

A. 2 QUADRATIC PROGRAMMING USING THE WOLFE METHOD

The quadratic programming (QP) problem is to minimize an'

objective function which is quadratic in the unknown variables

subject to a set of linear constraints.

.N I N N
Minimize: p(n) x(n) + E x(n) q(n,k) x(k),

n=1 n=1 k=1

N (A.3)
Subject to: E a(m,n) x(n) = b(m) m = 1,...,M

n=1l

x(n) > 0 n = 1,...,N.

Inequality constraints and unrestricted variables can be incor-

porated in (A.3) in similar manner as for the LP problem. If

the matrix Q, whose elements are {q(n,k)}, is positive definite,

satisfaction of the Kunn-Tucker conditions [26] is necessary

and sufficient for a solution to (A.3). These conditions are

satisfied by a solution to (A.4).

N

Z a(m,k) x(k) = b(m) m = 1,2,...,M

N M (A.4)
Z q(n,k) x(k) + 2 a(k,n) X(k) + y(n) = -p(n) n = 1,2,...,N

k=l k=l
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where

x(n) > 0

y(n) < 0

x(n) y(n) = 0 .

Problem (A.4) can be solved using a modified Simplex procedure due

to Wolfe [27]. The Simplex method is used to find a feasible

solution to (A.4) with the restriction that only one of the variables

x(n) or y(n) may be in the basis at a time. The FORTRAN subroutine

WOLFE used in the Energy-Minimization algorithm was written using

information in References 23, 26, 27. It uses a dual Simplex technique

to obtain primal feasibility and an artificial variables technique

to solve (A.4).

A.3 FAST FOURIER TRANSFORM

The fast Fourier transform (FFT) is a rapid computational

algorithm for calculating the discrete Fourier transform (DFT)

of a sequence of samples. The DFT transform pair is

N-I
X(kAf) = x(nAt) exp(-j2wkn/N)

n=O
(A.5)

N-1
x(nAt) = 1 X(kAf) exp(j2kn/N),

k=O

where N is the number of time or frequency samples and

T = NAt = N/F = I/Af. (A.6)
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Calculation of the DFT using (A.5) requires N2 complex multi-

plications. With the FFT this number can be reduced to N*log2 (N)

allowing the DFT to be calculated in less time and with less error

[24]. The computational savings of the FFT result from dividing the

problem into a large number of DFT's each with a small number of

points. The greatest savings are realized when N contains many

prime factors. The figures above are for N equal a power of two.

The FFT program used in the Minimax algorithm was FOURT, a FORTRAN

subroutine written by Brenner [28]. This program was chosen

because it is a general algorithm not requiring N to be a power

of two but providing as much computational savings as possible

depending on the prime factors of N.



APPENDIX B

DESIGN PROGRAMS

The five main programs used to accomplish the filter designs

in Chapters 2, 3, and 4 are described in Section B.1. Several

subprograms are called by the main design programs including SIMPDX,

WOLFE, and FOURT which are discussed in App. A. The remaining

subprograms and their functions are listed in Section B.2. Source

listings of the main programs and subprograms can be found in

Reference 29.

B.1 MAIN DESIGN PROGRAMS

The Minimax designs of pulse shaping filters for an ideal

channel in Chapter 2 were performed by the FORTRAN main program

PSIC. The Minimax design algorithm of Chapter 3 for a realistic

channel was implemented by PSRCT and PSRCF (T and F signify

transversal or frequency-sampling). The programs EMRCT and EMRCF

performed the Energy-Minimization designs of Chapter 4. Each of

these five programs is described by a flowchart in Fig. B-1 through

Fig. B-5. The input data needed by these programs is a description

of the design problem and is listed in Table B.1. The output

produced by the programs includes the design results, the accuracy

and energy measures, the filter impulse response, and the channel

output (if applicable).
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START 1

Read input Calculate {h(n)}
and {e(n)}

data using (2.3)

Call SPEC Call FOURT

{d(n)} {E(k)}

Set up LP Write design
constraint

matrix using results: e

(2.3) and (2.4). {H(k)}

Call SIMPDX Call GRAPH

{H(k)}, e h(n)), {E(k)

1 STOP

Fig. B-I. Minimax Pulse Shaping
Digital Filter Design Program.
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START 1

Read input Calculate y(t),
dataCall CHANL E , and D using

C (t) (3.2), (3.11),
and (3.13).

Call SPEC Write design
{d(n)} results: 8,

Et, and D.

Set up LP
Call CHANL

constraint matrix Call GRAPH
CT(t)using (3.9). {h(n)}, y(t)

Call SIMPDX Call MODEL
{h(n)}, e

1 STOP

Fig. B-2. PSRCT, Minimax Transversal
Equalizer Design Program.
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START

S Calculate y(t),
Read input Call COEF {e(n)}, and D

data using
(3.10) (3.10) and (3.13)

Call CHANL
Call SPEC Write design

C{(t) results:
d(n)} e, E t ' D

and {H(k)}

Set up LP
constraint Call COEF

matrix using Call FOURT
(3.8) and (3.10). (E(k)3

Call SIMPDX Call CHANL Call GRAPH

{H(k)}, e/ C T(t) f{h(n)), y(t)
{ (k)

Calculate {h(n)} Call MODEL

and Et using

(1.11) and (3.11)

STOP

1

Fig. B-3. PSRCF, Minimax Frequency-
Sampling Equalizer Design Program.
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START 1

Read input Calculate y(t),
Call CRANL and D

data CT
( t )

(3.10), (3.13)

Call SPEC Call SPEC Write design

{d(n)} results:

Et' D

Set up QP
objective and Call CHANL
constraint Call GRAPH

matrices (4.1), C (t) {h(n)},
(4.2), and (3.10) y(t)

Call WOLFE Call MODEL
{h(n)}, Et

1 STOP

Fig. B-4. EMRCT, Energy-Minimization
Transversal Equalizer Design Program.
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START 1

Calculate y(t)Read input Call COEF and D using

data (3.10) (3.10) and
(3.13)

Call SPEC Call CHANL
CT(t) Write design

{d(n)} results: Et,

Dand {H(k)

Set up QP
objective and Call COEF
constraint Call GRAPH

matrices using (3.10)
(4.3),(4.2),(3.10) h(n)}, y(t)

Call WOLFE Call CHANL

{H(k)C T(t) Call MODEL

Calculate {h(n)} STOP

using (1.11)

Fig. B-5. EMRCF, Energy-Minimization Frequency-
Sampling Equalizer Design Program.
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TABLE B.

INPUT DATA FOR DESIGN PROGRAMS

PSIC PSRCF PSRCT EMRCP EMRCT

Name of desired pulse X X X X X

N, number of samples X X X X X

B, samples per baud interval X X X X X

R, number of resonators X X X

{S(i)}, which resonator X X X

Tb, baud time interval X X X X

Name of channel model X X X X

Td, delay of channel X X X X'

e, allowed error X X
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B.2 AUXILIARY SUBPROGRAMS

Several auxiliary subprograms are called by the main design

programs to do specific functions. A brief description of the

operation of these subprograms is given in this section.

Subroutine SPEC produces samples of the desired received

waveform y(t) using as input the name of the waveform, the number

of samples, the number of samples per baud interval, and the delay

of the channel. For the Minimax designs SPEC returns N equally-

spaced samples of the desired waveform. For the Energy-Minimization

designs SPEC returns time values corresponding to the zero crossings

and/or baud times of the waveform as well as samples at these times.

Subroutine COEF calculates the coefficients of X(k) and Y(k)

in equation (3.10). It calls CHANL to obtain the impulse response

of the channel model.

Subroutine CHANL uses as input the name of the channel model

to be used and a time value t. It returns the value of the channel

impulse response at t, cT(t). For the channel models derived

from measurements, CHANL calls the Spline interpolation routines

SPLN1 and SPLN2 to produce a continuous, smooth curve through the

measured points in the channel's impulse response.

Subroutine GRAPH produces printer-plots of a waveform. It

uses as input a set of equally-spaced samples of the waveform.

Subroutine MODEL simulates the transmission of a 15 bit PN

sequence through the equalized channel. Bipolar unit pulses are

applied to the equalizer input at the rate of I/Tb. The equalizer

output and the channel output are recorded using GRAPH.
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